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Abstract. For constrained concave global minimization problems, two very different solution tech- 
niques have been investigated. The first such method is a stochastic mulitstart approach which 
typically finds, with high probability, all local minima for the problem. The second method is deter- 
ministic and guarantees a global minimum solution to within any user specified tolerance. It is the 
purpose of this paper to make a careful comparison of these two methods on a range of test problems 
using separable concave objectives over compact polyhedral sets, and to investigate in this way the 
advantages and disadvantages of each method. A direct computational comparison, on the same set 
of over 140 problems, is presented. 
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1. Introduction 

This paper presents an in depth computational comparison of two methods for 
solving linearly constrained concave global minimization problems. In particular, 
the two methods presented are used to obtain a solution to linearly constrained 
concave global minimization problems of the form 

global min ~b(z) 

(GP) zE f~ 

where q~(x) can be expressed in separable form. That is, 

n 

,(x) = 
i=1 

and each q~i (xi) is concave. Additionally, ~ = { x : A x  < b, x > 0 } is assumed to 
be nonempty and bounded, and x E R n, A E R mxn, and b e R m. 

Problem (GP) is a constrained combinatorial optimization problem for which 
many well known problems are special cases. For example, the concave quadratic 
global minimization problem is a special case of problem (GP) for which q~(x) 
= (1 /2 )x tQx  + ctx  where Q E R nxn is symmetric and negative definite (~b(x) can 
be transformed into separable form using the eigenstructure of Q). This concave 
quadratic global minimization problem is known to be NP-hard, and hence it 
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follows that problem (GP) is NP-hard. From a computational viewpoint, this means 
that, in the worst case, the computing time required to obtain a solution will grow 
exponentially with the number of nonlinear variables. An important property of 
problem (GP), which is basic to many solution methods, is that there exists a global 
minimum point which is a vertex of the convex polytope fL For this reason, linear 
programming is an essential part of any computational algorithm to solve problem 
(GP). 

This paper presents a computational comparison of two conceptually different 
methods for solving problem (GP). The first of these methods is a stochastic 
approach, described in detail in Phillips, Rosen, and van Vliet (1992), and is based 
on a multistart technique first proposed by Rinnooy Kan and Timmer (1987). 
The second method is a deterministic approach, described in detail in Phillips 
and Rosen (1992), which attempts to use a combination of linear underestimating 
subproblems, branch and bound techniques, and sufficient condition tests in order 
to recognize a global minimum solution. 

2. The Two Approaches 

The first of the two global optimization methods is a stochastic approach, described 
in detail in Phillips, Rosen, and van Vliet (1992), and is based on a multistart 
technique first proposed by Rinnooy Kan and Timmer (1987). This technique 
repeatedly employs two phases during the solution process: a global and a local 
phase. In the global phase, a random search direction is selected and used to obtain a 
starting point from which the local phase may begin. The local phase then attempts 
to find a local minimum by starting from this point. Since the global minimum 
is generally unknown, the objective of a multistart method is to find all of the 
local minima for the problem. But, since the total number of local minima is also 
unknown, an optimal Bayesian estimate of the number of local minima is used 
to terminate the method. This Bayesian stopping rule (Boender and Rinnooy Kan 
1987) indicates that, with very high probability; all of the local minima have been 
found; hence, the one with the lowest function value will be the global minimum. 

The use of this stopping rule alone, as suggested by Boender and Rinnooy 
Kan (1987) and verified by Phillips, Rosen, and van Vliet (1992), is very often 
too conservative and an additional test incorporating the fraction of the feasible 
region explored would be more practical. Thus, the final step allows termination 
of the method only when 99% of the feasible region has been explored. For a more 
detailed discussion and the theoretical justifications of each of the above steps, 
including the stopping criteria, see Phillips, Rosen, and van Vliet (1992). 

It should be noted that this stochastic algorithm can be applied to a much 
broader class of linearly constrained concave global minimization problems than 
those considered in this paper. In fact, the concave function ~b(x) need only be 
differentiable over I'~ for this approach to be applicable (separability is only required 
for the deterministic approach described in the next section). In addition, this 
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approach produces all of the local minima in addition to the global minimum, 
which in many circumstances are as useful as the global solution itself. The main 
disadvantage to this approach is that it does not provide bounds on the global 
minimum, nor is it guaranteed to find the global minimum. 

The second method is a deterministic approach, described in detail in Phillips 
and Rosen (1992), which attempts to use a combination of linear underestimating 
subproblems, branch and bound techniques, and sufficient condition tests in order 
to recognize a solution to the global minimization problem (GP). In this method, a 
linear function which underestimates the original concave function is constructed, 
and the solution of the corresponding linear underestimating problem provides 
both upper and lower bounds on the global minimum function value. A heuristic 
step is applied in an attempt to eliminate parts of the feasible region which cannot 
contain the global minimum point. In the worst case, this step will fail to eliminate 
any regions, but typically the heuristic will allow the original feasible region to be 
rapidly reduced to a much smaller polytope containing the global minimum point. 
Branch and bound techniques are then used to reduce the feasible region under 
consideration and decrease the difference between the upper and lower bounds. 
This procedure guarantees that an E-approximate solution (the relative error in the 
objective function is bounded by a user specified tolerance E) will be obtained. The 
use of sufficient conditions to recognize a global minimum, applied whenever a new 
candidate for the global minimum vertex is found, may significantly accelerate the 
solution for certain types of problems of the form (GP). If these sufficient conditions 
are not satisfied, the information can frequently be used to obtain improved bounds 
and possibly eliminate part of the feasible set from further consideration. For a 
more detailed discussion of this method, see Phillips and Rosen (1992). For a 
related method which also exploits the separablilty of the function in a branch and 
bound fashion, see B enson (1990). 

The major drawback of this deterministic approach is that separability of the 
objective function is required in order to make proper use of the sufficient conditions 
test. In addition, this approach does not guarantee that any local minima, other than 
the final global minimum, will be found. The main advantages of this approach are 
that it provides bounds on the global minimum at every step, and it is guaranteed 
to find the global minimum to within any specified tolerance in a finite number of 
iterations. 

3. Computational Results 

Computational results reported in Phillips, Rosen, and van Vliet (1992) indicate that 
randomly generated concave quadratic problems for which the global maximizer 
is known to be interior to the polytope are among the most difficult test problems 
available. Hence, the class of separable test problems of the form (GP) used for 
comparing the two methods were randomly generated concave quadratic functions 
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TABLE I. 

Number of Local Minima 

m n p min max avg 

10 10 0 13 57 25 

10 10 10 18 33 24 

10 10 20 16 28 21 

10 10 30 13 22 18 

10 10 40 9 23 15 

10 20 0 48 217 98 

10 20 10 44 141 86 

10 20 20 43 103 66 

10 20 40 24 83 49 

10 30 0 106 381 223 

10 30 10 108 356 180 

10 30 20 44 200 111 

10 40 0 116 587 393 

10 40 10 87 600 271 

of the following form: 

- 2 

i= l  

where u is the unconstrained global maximizer of ~b(x), )~ < 0 for i=1 ..... n, and 
all problems were generated in such a way that u E f~. In addition, a purely linear 
term of the form dry, where d, y E R p, was also added to the function ~(x). Both 
algorithms can be easily extended to handle these purely linear variables. 

Over 140 test problems were used in the computational comparisons, and all 
results were obtained on the CRAY X-MP EN464 supercomputer located at the 
Minnesota Supercomputer Center in Minneapolis, MN. For each of the methods, 
the same set of 10 problems with dimensions of m = 10, n c {10, 20, 30, 40}, 
andp  E {0,10, 20, 30, 40} were tested. Table I displays the minimum, maximum, 
and average number of local minima, as determined by the stochastic method, for 
each set of 10 problems. These results indicate that the addition of purely linear 
variables tends to make the problems somewhat easier as p begins to dominate n. 

Table II displays the minimum, maximum, and average CPU solution time 
required for each algorithm on the same set of problems. Table III presents averages 
of the total time required (repeated from Table II), the total number of linear 
programs solved, and the average number of pivots per linear program. In 138 
out of the 140 problems tested, the two methods obtained exactly the same global 
minimum vertex. For the two cases in which the stochastic method failed to find 
the global minimum vertex, the vertex that it found differed in function value from 
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TABLE II. 

m n p 

Time - - Stochastic Time - - Deterministic 

seconds (seconds) 

min max avg min max avg 

10 10 0 0.42 1.60 0.73 0.05 2.52 0.43 

10 10 10 1.19 2.65 1.80 0.08 0.63 0.34 

10 10 20 1.85 3.78 2.74 0.20 5.38 0.98 

10 10 30 2.74 4.64 3.49 0.42 2.75 0.97 

10 I0 40 2.44 5.79 3.99 0.42 3.34 1.12 

10 20 0 2.90 13.63 6.16 0.28 33.91 6.59 

10 20 10 4.51 16.17 10.16 0.33 675.00 68.83 

10 20 20 7.16 19.05 12.14 0.39 2.25 1.13 

10 20 40 7.51 25.13 15.19 1.21 4.97 3.02 

10 30 0 10.39 40.29 23.58 0.32 5.95 2.16 

10 30 10 17.81 59.17 29.53 0.42 23.52 5.80 

10 30 20 9.48 46.06 24.90 0.74 7.79 2.12 

10 40 0 16.67 99.14 62.76 1.15 9.93 4.01 

10 40 10 18.69 99.86 54.50 1.14 21.63 6.66 

329 

the true global minimum function value (as given by the deterministic method) in 
each case by less than 2.5% (the exact relative errors were 2.5% and 0.06%). 

It is clear from this table that in almost every case the deterministic method 
solves fewer linear programs, requires fewer pivots per linear program, and takes 
substantially less overall time to obtain a global solution than does the stochastic 
method. In two cases (n = 20 andp = 0; n = 30 andp = 10), the branch and bound 
portion of the deterministic method had to perform an unusually large number of 
domain splits in order to guarantee a global solution; hence, for these two cases 
the number of linear programs solved and the overall solution time are much larger 
than would otherwise be expected. In fact, for n = 20 and p = 0, the stochastic 
method turned out to be faster, on average, than the deterministic method on the set 
of test problems used. However, the results cited for the deterministic method in 
the case n = 20 andp =10 were almost entirely dominated by a single very difficult 
problem which required 675 seconds and 788467 linear programs to solve (see 
Table II). Excluding this particular problem, the average overall solution time for 
a problem of this size would have been 1.47 seconds for the deterministic method. 

Table IV presents a more detailed set of statistics for the stochastic method. For 
each set of  problems of the same size, this table lists the average number of random 
search directions required (i.e. trials) and the average number of local minima 
found. In addition, since the global minimum vertex is one of the local minima, 
Table IV also shows, on average, which local minimum turned out to be the global 
one. From this table it is apparent that the global minimum is detected relatively 
early in the process, but the remaining trials are still required in order to satisfy the 
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TABLE III. 

A. T. PHILLIPS AND J. B. ROSEN 

Stochastic Method Deterministic Method 
m n p Time (secs) LPs Pivots/LP Time (secs) LPs Pivots/LP 

10 10 0 0.73 841.2 3.0 0.43 470.8 2.8 
10 10 10 1.80 904.7 5.3 0.34 177.3 3.9 

10 10 20 2.74 768.3 7.4 0.98 585.6 3.8 
10 10 30 3.49 653.5 8.7 0.97 306.2 3.8 
10 10 40 3.99 579.2 9.8 1.12 260.7 4.1 

10 20 0 6.16 3719.5 4.3 6.59 5885.4 2.0 
10 20 10 10.16 3370.7 6.0 68.83 79671.1 1.9 
10 20 20 12.14 2739.2 7.1 1.13 524.7 2.9 
10 20 40 15.19 1985.3 9.2 3.02 984.4 2.3 
10 30 0 23.58 8640.1 5.3 2.16 1622.7 2.3 
10 20 10 29.53 7619.0 6.3 5.80 3428.1 2.7 
10 30 20 24.90 4599.1 7.3 2.12 937.2 2.8 

10 40 0 62.76 15977.5 6.0 4.01 2418.7 1.4 
10 40 10 54.50 10532.8 6.9 6.66 3960.5 1.4 

TABLE IV. Sochastic Method Statistics (Averages for 10 problems) 

Global Min Trials Since Last 

m n p Trials Local Minima was Local Min # Local Min Found 

10 10 0 261.0 25.0 4.9 41.8 

10 10 10 247.0 23.6 4.9 35.3 
10 10 20 219.0 20.8 6.4 31.0 
10 10 30 190.0 17.9 6.5 40.9 

10 10 40 159.0 14.8 3.7 40.8 
10 20 0 992.0 98.1 5.2 38.6 
10 20 10 874.0 86.3 8.9 44.5 
10 20 20 671.0 66.0 7.4 41.9 
10 20 40 505.0 49.4 8.7 41.3 
10 30 0 2245.0 223.4 13.4 49.7 

10 30 10 1808.0 179.7 22.8 38.1 
10 30 20 1119.0 110.8 6.9 26.4 
10 40 0 3927.0 392.6 8.1 48.2 
10 40 10 2596.6 271.4 11.9 23.5 

B a y e s i a n  s topping rules. Final ly ,  once  the final local  m i n i m u m  ver tex is found,  the 

s tochast ic  me thod  m u s t  still per form a n u m b e r  of  local  searches in  order  to satisfy 

the s topping criteria. The  n u m b e r  of  such trials is l isted in  the last c o l u m n  of  Table  

IV. 
The  use  of  the Bayes i an  s topping ru le  i nvo lv ing  only  the n u m b e r  of  local  

m i n i m a  and  the n u m b e r  of  trials is very  of ten too conservat ive ,  and  an addi t iona l  
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TABLE V. Deterministic Method Statistics (Averages for 10 problems) 
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Domain Sufficient Conditions Subregion Incumbent 
m n p Splits Satisfied Eliminations Improvements 

10 10 0 5.3 1.0 0.9 4.8 
10 10 10 2.7 0.9 0.3 0.2 
10 10 20 2.5 0.5 0.4 20.2 
10 10 30 4.4 0.5 0.6 1.8 
10 10 40 3.2 0.3 0.6 1.1 
10 20 0 14.2 1.1 1.7 1.5 
10 20 10 7.3 0.9 0.9 4.1 
10 20 20 2.7 0.7 1.0 3.4 
100 20 40 6.5 0.7 0.9 2.1 
10 30 0 6.4 1.0 0.8 5.6 
10 30 10 17.5 1.0 1.5 7.6 
10 30 20 2.7 0.4 1.1 1.5 
10 40 0 9.3 0.9 0.8 4.1 
10 40 10 7.8 0.7 1.6 12.1 

test that allows termination of the method only after 99% of the feasible region has 
been explored would be more practical. In fact, these computational results fully 
support this hypothesis since in all 140 problems tested, the stochastic method 
was stopped by this additional check on the fraction of the domain explored. This 
greatly decreases the overall solution time since for a problem of size m =10, n = 
20, and p = 0, the total number of local minima discovered is approximately 98 
and the original Bayesian stopping rule alone would have required 19504 trials for 
termination. The results from Table IV indicate that only 992 trials were needed 
using the combination of the two stopping rules. 

Table V presents a more detailed set of statistics for the deterministic method. 
For each set of problems of the same size, this table lists the average number 
of domain splits required (in order to guarantee a global solution) by the branch 
and bound aspect of the method. In addition, Table V lists the average number 
of times the sufficient conditions were satisfied, the average number of times that 
a subregion was eliminated by the heuristic linear underestimation step, and the 
average number of times that the incumbent solution was improved. 
Finally, it should be noted that both algorithms have been useful in obtaining solu- 
tions to problems which are better than the previously reported "global" solutions. 
For example, the collection of very difficult global optimization test problems com- 
piled by Pardalos and Floudas (1990) contains a number of problems of the form 
(GP). The solutions reported in problems 2.1 through 2.7.4 have been confirmed by 
both the stochastic and deterministic approaches. However, Pardalos and Floudas 
(1990) report a "best known solution" of ~b = -4105.28 with corresponding vertex 
x (non-zero components only) of x4 = 0.995, xla = 0.930, x16 = 7.412, x18 = 12.674, 
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and x20 = 17.990 for problem 2.7.5, whereas both the stochastic and deterministic 
methods discovered the global minimum function value ~b* = -4150 .41  with cor- 
responding vertex x* (non-zero components only) of  x3 = 1.043, xl l  = 1.747, x13 = 
0.431, x16 = 4.433, x18 = 15.859, and x20 = 16.487. 

In summary, for  the problems tested in this comparison, the deterministic method 
is always faster than the stochastic method and would hence be preferred as long 
as the global minimum is the only solution sought, f f  it is desired to obtain local 
minima in addition to the global solution, or if  one desires to study the inherent 
difficulty of  a problem as measured by the total number of  local minima, then the 
stochastic approach would be preferred. 
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